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ABSTRACT

The techrdque described presents a methiod to express uncertainty

quantitatively in advanced system cost estimates. In particular, the

technique suggests the employment of subjective probability distributions,

which describe the uncertainty in each system element, to determine an

approximate distribution for total system cost. A 7090 program has been

written to perform the corhputational operations.
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GLOSSARY*

Stochastic: An adjective referring to an operation which describes uncer-

tainty statistically.

Random

Variable: A quantity whose value is uncertain. TO fully describe a

random variable, the probability of every possible value of

the random variable must be given.

Upper (Lower)

Tail: Theý value of a random variable such that the probability of

this value or any higher (lower) value equals a stated amount.

Mode: The most probable value of a random variable.

Dependency: If x and y are dependent random variables, knowledge of

6the value of either variable will change the analyst's feeling

about t#hedisttibution of the other. Mathematically, if x and

y are dependent, then p lxk/yj can-not equal p (Xl) for all

values of k and j.

Linearly Scaled
Beta Distribu-
tion;** A continuous finite unimodal distribution that may be either

skew or symmetrical and has four degrees of freedom. The

rectangular distribution is a special case of the scaled Beta,

and the normal and gamma distributions are limiting forms.

*Definitions correspond to word use in this report.

**This distribution is equivalent to Pearson Type I.
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Mathematical Expression:

P (x; .a, 0 = (a + +.) r-a-CL, x-a)BETA ', , r(cL+1)r(o+-) . -b

where

a, b, ca, and 0 are real numbers;

b, a, and 0 are non-negative;

r (u) is the gamma function; and

a< x < a+b.

th
1t Origin
Moment: The average (or expected value) of a- random variable raised

to the-kth power. The first origin moment is the mean, p.

Mathematical Expressiom

ak Pki or x p (x) dx

i
discrete continuous

case ' case

th
k Central
Moment: The average (or expected value) of a rzindom variable dimin-

ished by its mean raised to the kh power. The first central

moment is zero and the second is the variance (the standard

deviation squaredc.

Mathematical Expression:

"ior _ Px-kp(x)dx

discrete continuous
case case

-ix-
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Additive
Moments: Moments (of random -vriables) which hive the following prop-

erty: *, the. kt morment for- the -sum of independent random

variables:equals-the, sum of 1the kth moments of each-of the

added variables.

Mathematical Expression for the First Four Additive

Modents:

A~o!~ 2  '(2)., (4 _3[P(2,12

Multiplicative
Moments. -Moments (ofk random vatrables) which have the following prop-

"th

S-vaib.¶.,esgeuai~s•he ,pr0uct~of,-k moments of each of'the

m..tlplicd variables.

Mathematical Expression for Multiplicative Moments:

System Cost

Input Elements: Each variable the analyst defines in the process of estimating

the sy'•tem total cost. Examples are quantities of personnel,

equipment packages, and computer programs, price levels,

and planning factors. As a convenience the abbreviated form,

cost element, is used in the paper.

See Appendix IMI for proof.

--.-



Cost
Structure: The -manner in which input cost elements are combined to

determine total system cost.
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AUTHOR'S PREFACE

Although there is wide agreement concerning the logico-mathematical
Srules to which probabilities (whatever they may be) must adhere, there is
substantial disagreement among applied mathematicians, decision theorists,

and statisticians :as to the-essential meaning of probability. Currently, this
controversy seems to be centeredaround~two distinct points of view. One. is.
the "objectivist" or "relative. frequency" point of view, which defines proba-
bility as the long-run relative frequency limit-of the ratio of the observed
number of favorable events to the total number of observed instances associ-
atedowith-the outdomes of a random physical process. Probability, according
to this point of. view, is a phenomenological concept--a statistic estimated
from- repe-ated Observations. of some directly observable phenomenon. On

the other hand, the "subjectivist" or "personalistic"l point of view defines
probability as a numerical coefficient purporting to measure a particular
human being's subjective belief about thr. outcomes of some physical phenom-
enon. Probability, from the subjectivist standpoint, is not a phenomenologi-
cal. concept at fl•. It.is nota characteristic of the physical phenomenon to
Which it purports to refer, .but, rather., a characteristic-of human beings--a
-com4ponent7Part of-a particular individual's attitude toward a phySical-phe-
nomenon. As such, sibjective probability is a fictional concept, muchklike
the concept of "force" in physics, which can only be inferred from observa-
tions of displacement and-motion on the part of physical bodies, and like the
concept o "•intelligence" inpsychology, which can only be inferred from
observed verbal and/or choice behavior on the part of human beings.

Viewing probability from the objectivist point of view has proved highly
successful in many historical applicatons, including the management of
gambling houses, industrial quality control, and numerous scientific endeav-
ors, particularly inAthe field of genetics. However, the success of these
applications rests upon the existence of a stable, physical process of which
repeated observations can be made. Even more, the whole notion of objec-
tive probability requires the existence Of such processes, since the objectiv-
ist definition does not apply to a nonrepetitive phenomenon. Strictly inter-
preted, therefore, the objectivist point of view can be of no assistance in
explaining or predicting the outcome(s) of nonrepetitive phenomena.

However, many real-world decision makers face the necessity of
taking definite actions in the face of substantial uncertainty regarding the

-xii -



outcomes of nonrepetitive phenomena. Since the objectivist concept of proba-
bility cannot be of service in making such decisions, the subjectivist view
has been developed to fill the void. The conceptual foundations of subjective
or personalistic probability have been worked out by Leonard J. Savage. [1] *
Two pioneers in applying this concept to many real-world decisions problems
have been I obe-rt Schlaiffer[21 and Howard Raifa. 1:3] Specific implementa-
tion of this'concept in oil well drilling decisions is reported by C. Jackson
Grayson. 14]

The position taken in-,this.report is that-the process by which military
system costs are generated does not usually constitute a stable, repetitive
phenomenon to which objectivist probability is -an applicable concept.
Therefore, probability is considered from the subjectivist point of view,
anid the author presents &a technique by which the necessary implications of
a, deCision-makerIs or analystIs subjective judgments concerning costs may
be derived and displayed.

J. R. Miller, IM

*Numbers in brackets refer to references at end of report.
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SECTION I

L INTRODUCTION

PURPOSE

• t The analyst fhced mwith••he task of estimating the cost of. advanced mili-

tary systems is continually beset by the problem of coping with a host of

attendant uncertainties. Single-value estimates, although duly qualified, belie

r the, full range.of possible.• cot consequences that may ensue once the decision

to acquire a- given system.has been made, and in a :great many instances such

- estimates gravely misstate the ultimate systemc0ost.- Therefore, early in

"the systein life :cycle, defense planners have been promulgating their need for

-imroved information about a proposed system's possible economic. implica-

ti6nhs, dspite :manifest-deficiencies in any early system-description. The

present paper.suggests tihe kinds of information about the uncertainty wh•ch

might, be shown- to. defense planners, and offer, t-techni que to generate.such

. ..f.r.matio...

SOURCES OF UNCERTANTY

Uncertainties in advanced, systems cost-estimAtes arise from many

sources. Examination of such sources has revealed that they may be divided

k into-two basic categories. The first category, examples of which are shown

in Table I, consists of those types of uncertainty which are amenable to plan-

Sning decisions, that is, those types over which decision makers exercise

control. The second category, examples of which are shown in Table II, is

the class of uncertainties which is beyond direct control or explicit planning

during the-conceptual phase of a system.

- -_. -,,, -----..-_



EXPRESSING COST UNCERTAINTY

Because of fundamental differences between the two categories of uncer-

tainty, different techniques are needed in dealing with them. Category I

unceitainties might best be represented by exhaustively identifying all signifi-

cant competing design alternatives and by providing the decision maker with

the economic implications of each planning choice. Nevertheless, because of

the 'large lead- time betveen' the- generation of advanced system cost estimates

vand-the date by whichthe system achieves operational status, a large number

of iesidual uncertainties, i.e., Category II uncertainties, will, in general,

characterize each of the identified system alternatives. It would thus be

desirable to convey to the decision maker a meaningful numerical range

* describing the magnitude of the effect on the total system cost of the simul"-

taneous presence of all the residual uncertainties in the system elements. In

addition, numerical ranges describing lower-levels of cost aggregations-than

the total system are valuableto expose major sources-of uncertainty. Finally,

to support statistical analysis, it Woiuld be useful to, show the relative likeli-

hoodthat different cost magnitudes will be the actual,-ultimate total system

cost. This report is addressed to generating thisiiiforrmation.

Table I

Examples of Sources of Vutel^ry I Uncertainty

eSystem Performance Requirementse*

Examples: coverage, numbers of users served, survivability, reliability,

flexibility, growth potential, reaction time, range, warning time.

*Although these requirements depend on factors (such as the enemy threat and
existing technology) which a decision maker does not contf:o, he does generate
an explicit and conscious statement of. the performance requirements for the
system on the basis of a given set of constraints and goals; thus system per-
formance requirements are included. in Category I uncei tainties.

-2-
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_______Table I (cont 'd.)

implementation Plan

Exampies: schedules, amount of in-house vs. external management,

number and extent, of competing contractor studfes§ during the program defi-

mition phase.

Configuration (RLesource Inventory)

Exam*ples: number and:.1ndt. of hardware packages, the, nature, and extent

of software, and the quantity and quality of personnel. *

Operational Concept

Examples: modes of opý..rtion during varying periods (e. g., tranquil,

- -'crisis., tkans and-post attack), amhount of peace time exercises.

MA intenance Concept

-Examples: contractor vsi military maintenance, number of shifts.

Logistics' Conicept
Exam~ples: -number,, size, and 46batift5 of- warehouases -to maintain -supply

line, quantities and-type's oi stocks and-spares to be stred'at each.

Training Concep

Examples: in-house vs. contractor training, formal vs. on-the-job

training.

Funding Schedule

Examples: scheduling of obligutional authority.

**Ordinarily in the conceptual phase, these cap. be Only grossly defined.



Table H

4" Examples of Sources of Category II Uncertainty

SPrice levels for equipment and contractor services

-Extent of R&D effort needed for desired equipment development and resulting

production cost of developed items

'Exact quantities-and types of personnel required to, effectuate a given, opera-

tions and .maintenance concept

Exact quantities and types of support equipment ý(AGE), initial and follow-on

"spares, documentation, etc.

Manpower and Computer time requirements for system design and management

Exact hardware and software design specifications for operational system

A FEWEARLY APPROACHESTO, DESCRIBE CATEGORY I UNCERTAINTIES

Akcommon pratice in cost estihmating is to study the nature andlmagni-

t-ude of the uncertaiiity in each of the system cost input elements* (see

GOlossary) and footnote the. estimate with statements about possible variations

in their values. This prtcedure serves to put the -user of a cbst estimate on

.noticethat the single value shown for total system-cost is Subject to error,

and helps to focus attention on the major sources of-uncertainty. Neverthe-

less, such information does not reveal the extent to which the estimated total

system cost is likely to deviate from the actual cost..

In order to provide some estimate of uncertainty in total system cost,

analysts have attempted to make an astute guess about the variability of such

*For simplicity, the abbreviated form, cost element, will be used subse-
quently throughout this report.

-4-



cost and record the result for the decision maker's reference. The analyst

performs this operation by mentally assessing the combined impact of all

sources of uncertainty in all of the cost elements. For a typical size system,

such practice strains the faculties of even the most gifted analyst, and hence

the results are of questionable validity.

Another expedient used in queSt of more reliable information about-the

variability in total costs requires the analyst to specify a likely range for each

of the cost elements; then two additional total system cost estimates can be

computed, one being the Sum of the lowest values for all the cost elements,

and the other being the sum of the highest values. In this manner a range is

established for the total system" cost. However, such a range is subject to

strong criticism. It is self -evident that the possibility that all elements will

actually attain their lowest values (or their highest) is very remote. Hence,

such a range is a serious overstatement of the magnitude of likely variability

in total system costs.

A more precise tecmhiique is therefore neeided to translate the analyst's

feelings about the uncertainty in all the cost elements into a statement about

the uncertainty in the total system cost, This paper has been written to

suggest one such technique.

-5-



SECTION II

DESCRIPTION OF THE PROPOSED TECHNIQUE

GENERA-L

'Uncertainty in each of the cost elements is described by treating the

elements, as random. variables. A subjective distribution*2 for each element

is provided by the analyst to represent his feelings about the relative likeli-

hood of allUfeasible values. The burden placed on the analyst, however, is

minimized by requesting that he provide only four numbers which are esti-

mates of four parameters characterizing the shape of the distribution curve.

From the four parameters the entire distribution is inferred. This is

done by assuming a linearly scaled beta function (see Glossary) which satis-

fies the analyst's inputs. The element distributions are then combined in
1[5]accordance with a cost structure co produce the probability distribution

for the total system cost and equivalent distributions for intermiediate levels

of cost aggregation. Cumulative probability intervals and relevant summary

statistics (e. g. , mode, mean, or median) can be generated from such dis-

tributions.

LIMITATIONS

The procedure described is suited for direct application in the following

situation: (1) the probability distributions specified in the input data are uni-

modal; (2) only additive and multiplicative operations are involved in relating

element costs to total costs; (3) elements which are multiplied together are

Lidependent; and (4) elements which are added together are either independent

or linearly dependent (see Appendix 1).

-6-



Procedur,.:- are presented for permitting application of the technique

in some situations which do not satisfy the above requirements.

INPUTS PROVIDED BY THE COST ANALYST

To cope with uncertainty in schedule estimates, PERT 6 has adopted

a procedure which utilizes a scaled beta function and requires that the analyst

furnish, three niumbers to specify its form. These three numbers are esti-

mates of the lowest, XL , and highest, XH , values (lower and upper

I percent tAils, respectively) and the mode, Xp , (most probable value).

The PERT procedure assumes that the distribution's standard deviation

can always be satisfactorily approximated as one-sixth of the total range,

i.e., 1/6 XH - XL . However, since 1 percent tails are difficult to esti-

mate accurately, standard deviations calculated in this manner may be unre-

liable; in addition, this method of cornputation makes no allowances for

widely dispersed or sharply peaked distributions. * Hence, the resulting

curve often grossly distorts the analyst's actual feelings. Furthermore, this

restriction on the standard deviation seriously reduces the variety of shapes

which are inherent in the beta family.

To overcome such shortcomings, it has been decided in the proposed

technique to specify a fourth number, the 80 percent central range. The

80 percent central range, CR , represents the range of the estimated

variable which contains 80 percent of the probability. It is calculated by

subtracting the lower end of the range (the lower 10 percent tail) from the

upper end of th•e range (the upper 10 percent tail). By permitting the analyst

the freedom of specifying CR , more representative distributions often can

*Statisticians refer to this phenomenon as the distribution's kurtosis.

-7-
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result. For example, the rectangular, normal, and gamma distributions may
*

all be accurately portrayed. Figures 1 and 2 are provided to demonstrate

some of the varied shapes that T•ie beta distribution can assume.

Hence, for each cost e:.na:,ent, the adelyst provides four values, XL
**

XH , XP, and CR , to deicrire the -aim-ertainty. This information is

based, on the analyst's assessment of zhe prcbable sources and magnitude of

the uncertainties. For such assessment, the atalyst not only uses relevant,

processed, historical data, but obtains and evaluate-i the opinions of experts

and takes into account any discrepancies.

At this point tt might be well to discuss the analyst's willingness to

provide more data than in the past. It is quite probdle that the analyst's

reaction to such a situation will be related to his integrity. If he sincerely

believes that extensive uncertainties enshroud the value of a particular cost

element, it will be very difficult for him to specify a single value. Hence,

it is the author 's contention that When uncertainty exists, the conscientious

cost analyst will appreciate the opportunity of being able to stipulate ranges.

DETERMINING UNCERTAINTY IN TOTAL COSTS

Random variables representing cost elements may be cowlrined in

accordance with a cost structure to produce a random variable to represent

the total system cost. By knowing (1) the distributions of the cost elements,

* The linearly scaled beta function is perhaps more generally known as a
Pearson I curve. The gamma and normal are limiting forms and hence can
be approximated with any desired accuracy. The rectangular distribution is
a special case of the beta.

**When "0ae uncertainty is insignificant, only one value need be. specified.

This value should be set equal to the rowi, . aad all higher moments can be
taken equal to zero.
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(2) the nature of any statistical dependence which may exist among them, and

(3) the functional relationships which reflect the cost structure, the distribu-

tion for the total system cost may be determined.

To satisfactorily treat uncertainty in advanced system costs, it is con-

sidered adequate to represent the cost structure by products and sums of

random variables where multiplied variables are independent and added vari-

ables are either independent or linearly dependent. The concept of'linear

dependence, as used in this paper, is defined in Appendix I.

The additive-multiplicative restriction on the cost structure is not

believed to be a very serious handicap, since, in the author's experience,

these operations are most frequently encountered in costing advanced elec-

tronic command and control systems. However, it is possible to process

more general functional relationships, as described in AppendixII.

The limitations placed on intervariable dependence are also believed

not to be highly restrictive. Appendix I shows that in many situations depend-

ence can be avoided completely by ;the proper choice of cost element vari-

ables. However, in those instances where this expedient is not possible,

linear dependence, in the author's opinion, will generally be adequate to

reflect the statistical relationship among variables.

As demonstrated in Appendix I, the sum of linearly dependent variables

may be expressed as sums and products of independent auxiliary random

variables. The appendix further describes the information which the analyst

may provide to determine these auxiliary variables. Thus, in a great many

circumstances, the author believes ihat the cost structure may be satisfac-

torily represented by the sums and products of independent random variables.

-11-



It is well known that when independent random variables are added the

distribution of their sum can be determined by convolving the component

distributions. Similarly, when independent random variables are multiplied,

the dist ribution of their product can be determined by an analogous process

(which is portrayed in Appendix I1). Nevertheless, since the input data about

the uncertainty are only approximate, it was felt that such elaborate opera-

tions were not warranted. Instead, the decision was made to use moments

to summarize the distributions. This procedure is discussed in the following

section.

UTILIZATION OF MOMENTS TO GENERATE THE DISTRIBUTION-OF TOTAL
COSTS

To treat uncertainty in PERT, the mean and standard deviation for each

element distribution is computed and then used to comwpute the mean and

standard deviation for the total. The central limit theorem, which states

that Under suitable conditions the distribution rep6esenting the sumn of random

Variables tends th the normal, is then customarily invoked. Since the normal

distribution is completely specified by the mean and Standard deviation, the

distribution of the total is thus determined.

The degree to which the normal faithfully portrays the distribution of

the sum depends on many factors, including the number of variables added,

the shapes and relative sizes of their distributions, and the degree of

dependence among them. It is not clear, therefore, that total system costs

will always be adequately represented by the normal, and it is even less

apparent that the distribution of intermediate levels of cost aggregation will

be adequately represented. The mean and standard deviations themselves

provide no clue on the reliability of the normal approximation.

-12-



Figure 3 provides a graphic portrayal of the kinds of probability state-

ments that can be made for a normal distribution. It also shows the upper

bound for confidence statements that can be made for any distribution. In

addition, it depicts an estimated upper bound for unimodal distributions.

Because confidence statements for the normal are so much tighter than

for either of the indicated upper bounds, use of the latter bounds will fre-

quently grossly overstate the uncertainty. Furthermore, the mean and

standard deviation provide no insight about skewness. Thus, it is desirable

to generate more information about the uncertainty in cost aggregations

before attempting to construct a distribution.

To cope with the above situation, it was decided to use the first four,

instead of just the first two, moments (such as the mean and standard devi-

ation). In this regard, additive and multiplicative moment sets were

employed. These are defined in the glossary and their properties are
th

demonstrated in Appendix IU. The n :_iitive moment for a sum of inde-
th

pendent random variables is simply computed by adding the n additive

moments for each of the variables. Equivalently, the nth multiplicative

moment for a product of independent random variables is the product of the
th

n multiplicative moments of each variable.

The distribution for total system cost (and for intermediate levels of

cost aggregation) is constructed by determining the linearly scaled beta*

(a four-parameter function) which has the same first four moments. The

various mathematical operations that are involved in this process are

*If the beta distribution cannot satisfy these moments, the appropriate
member function from the Pearson family may be used (see Table 43,
Ref. [7).
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Figure 3. Probability that a Random Variable is More than Ka Away
from the Mean
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described in Appendix IV. The integrity -of this prockkire is demonstrated in

Appendix V by comparing the resultant distributions with the theoretical

curves.
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SECTION IIl

COMPUTER PROGRAM

INTRODUCTION

A program has been written for the 7090 to facilitate the translation of

the analystis feelings about the uncertainty in each cost element into the

parameters of an approximating linearly-scaled beta distribution for the cost

total and sub-totals. These parameters are used to generate upper and

lower bounds to a cumulative probability interval of any desired size. The

program is composed of three discrete parts which are described below.

The reader is referred to Appendix VI for a more detailed description

of the program, including an explanation of the mechanics involved to operate

it on the MITRE 7090 Facility.

PROGRAM I

Program I accepts as inputs those four parameters of the linearly

scaled beta distribution which are provided by the analyst. The reader will

recall that these are the most probable value, the lowest and highest values,

and the 80 percent central range. With this information, the four additive

moments are computed and presented as an output. The input is put on

punch cards and the output is printed. The reader is referred to Figure 4

for a graphic description of this program.

PROGRAM II

Program H accepts the additive moments computed by Program I for

all of the cost elements and computes an equivalent set of moments for

-16-
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X P1 XV. X141 aCn LINEARLY SCALED X, Y, v, &W

SUBJECTIVE ESTIMATES BETA DISTRIBUTION (FIRST FOUR ADDITIVE
PROVIDED BY ANALYST MOMENTS.)

FOR EACH COST ELEMENT

XP MOST LIKELY VALUE (MODE)

XL& XN LOWER & UPPER 1% TAILS

CR 80% CENTRAL RANGE (UPPER 10% TAIL MINUS LOWER 10% TAIL)

X lit ORIGIN MOMENT : MEAN (EXPECTED VALUE)

Y: 2nd CENTRAL MOMENT : VARIANCE (STD DEVIATIONS

V: 3rd CENTRAL MOMENT

W: 4th CENTRAL MOMENT minus Y2

Figure 4. Graphic Representation of Program I

cumulative costs at all desired levels of aggregation. An effort was made to

keep the program sufficiently flexible so that a large variety of arithmetic

arrangements in the cost structure could be handled. The input is inserted

on punch cards. The output, specifying the additive moments of aggregated

costs, is furnished on punch cards (which can be used as an input to Program

Il and is also :printed, Figure 5 depicts the program.

PROGRAM M

Program TIT converts the additive moments computed by Program II

into the parameters (see Glossary) for the linearly scaled beta distribution.

-17-



X, Y, V,_ 8W COSTX, Y V, W
FOR ALL COST ELEMENTS STRUCTURE FOR EACH SUBSYSTEM AND
(PROG. I OUTPUT) FOR TOTAL SYSTEM COST

[RESTRICTION ON COST STRUCTURE:

SUMS AND PRODUCTS OF INDEPENDENT RANDOM VARIABLES)

Figure 5. Graphic Representation of Program 11

S- It further determines bounds for any y cumulative probability interval by

finding limits for the I - y/9 tails.* Inputs are on punch cards and the

output is printed. Figure 6 depicts this program.

*Exact upper and lower bounds to these tails can be computed directly from
the first four moments to reveal the maximum error in the beta approxina-
tion. [8]
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SECTION IV

USEFULNESS OF THE RESULTS

Information provided by the tcchnique proposed herein furnishes a better

single valie (as- compared to conventional estimates) to represent the most

likely cost of a military system and, in addition, furr.ishes a quantitative

statement about the nature and extent of the uncertainty.

Conventional estimates typically introduce the most likely value for

each cost element into the cost structure to determine the system's total

economic implications. Nevertheless, since the distributions for the cost

elements are generally skewed upwards, the single value thus computed for

the system often has very little likelihood of occurring and may constitute a

serious understatemenit of the true cost. When a single value is required

from the cost analyst, the mean or the modal value (which are frequently

relatively close for the total system cost) is generally a more meaningful [2]

figure to specify. In systems which are characterized by considerable

research and development, these latter values have been shown to exceed the

conventional estimate by more than 30 percent.

Bracketed probability intervals provide a quantitative measure of the

range of the uncertainty in aggregate costs. Such intervals provide insight on

whether or not the accuracy of a cost estimate satisfies the requirements of

its intended application. The decision maker may establish in advance the

accuracy criterion which must be met. The bracketed interval would

disclose whether the criterion is satisfied.
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Bracketed probability intervals for subsystem costs and other inter-

mediate levels of aggregation serve to identify areas of major cost uncer-

tainty. These are areas which might benefit from subsequent efforts to

refine costs. However, consideration should be given to the sensitivity of

the uncertainties to more intensive study, since substantial additional

probing will not materially reduce certain types of uncertainties.

The probability function can be used to make computations which may

provide extremely useful information to the decision maker. For example,

when two or more equal effectiveness, alternative configurations are being

considered for acquisition, one can either immediately select the system

with the lowest expected cost or defer a decision, pending the collection of

more information. By knowing the entire probability function, it is possible

to compute (1) the probability that the alternative having the lowest ultimate

cost will not be selected by using the lowest mean criterion, and (2) the

expected size of the cost premium which results from not having perfect

information. [2] This expected loss (premium) can be used as an index of

the maximum effort that should be devoted to refining cost or to pursuing

exploratory R&D. Conversely, this expected loss represents the maxi-

mum expected gain from deferring immediate action.
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SECTION V

VALIDITY OF RESULTS

The reader is no doubt well aware of the fact that a conventional cost

estimate is no better than the quality of its inputs. The analyst's ability to

identify all cost contributing elements and to properly assess their economic

implications bears directly on the validity of the end product. Similarly, in

appraising the sources and magnitudes of the uncertainties which influence

each element's cost, there is no satisfactory substitute for reliable data.

The cost analyst must carefully and astutely search out all significant factors

which give rise to system element cost variability and reflect the magnitude

of their effect. The author wishes to point out, however, that although this

does place an added burden on the analyst, he will probably derive grea.ter

satisfaction from pursuing this task than trying to generate a single number

in the face of imperfect information.

It is true that the analystts inputs to describe the uncertainty are sub-

jective. Nevertheless, because of the general unavailability of completely

relevant historical data from which the cost of advanced systems can be

accurately gauged, single value estimates, themselves, contain varying

degrees of subjectivity. What is perhaps more important, however, is the

fact that although cost analysts in the past have been fully aware of the

presence and character of element uncertainties, the means did not exist to

properly assess their cumulative impact on the total system cost. Hence,

more often than not, only an extremely unreliable conjecture about total cost

uncertainty cuuld be passed on to decision makers. By applying the proposed

technique, the cost analyst is permitted to focus his attention on appraising
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the uncertainties surrounding the individual cost elements, an area where he

is believed more qualified to judge uncertainty; and standard statistical

methods are then employed to measure their aggregate implications on the

system total.

If the analyst inadvertently neglects to consider significant sources of

uncertainty or has even forgotten to include some cost elements, the results,

naturally, would understate the magnitude of the uncertainty and bias the dis-

tribution. Oversight of relevant cost areas is, of course, an error which

has just as serious an effect on single-value estimates, and hence, much

work has been and is -being done to-minimize this possibility. Similarly,

work is needed in-developing a capability-to realistically appraise the sources

and magnitude of uncertainties.

It 49 the author's contention that any information the analyst can provide

regardingthie magnitude of the uncertainty (even if occasionally in the form of

an edudated guaeg) is better than-no knowledge at all. The proposed technique,

in its present form, is regarded as merely a first step in the direction of

providing decision makers with more meaningful information about the vari-

ability in total system costs.
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SECTION VI

AREAS OF FUTURE WORK

Many refinements of the technique described herein will probably

germinate from the experience gained in its successive application. Two

* specific areas where more intensive study seems to offer large potential

rewards are: (1) development of techniques to aid in obtaining quantitative

information about the cost uncertainty from experts; and (2) development of

analytical tools that will permit fuller utilization of the generated statements

about the uncertainty in making planning decisions.

-24-



APPENDIX I

DEPENDENCE AMONG VARIABLES

AVOIDANCE OF DEPENDENCY

In a typical cost estimate, there are ceri;ain cost items which one

normally would expect to be dependent. An example is mission equipment

cost, initial spares cost, and maintenance cost. Nevertheless, if the total

of these three items is determined as below

NxtT + .01PM(+ ys

where

'N = number of units;

U = equipment cost;C

PM= percentage maintenance costs are of equipment costs; and

yS= ratio of spare costs to maintenance costs,

the component variables in the above expression may frequently be regarded

as independent. When the above technique can be employed, it is possible to

avoid other means of specifying the nature of the dependency.

LINEAR DEPENDENCE*

Definition and Properties

When two cost elements are dependent, the relationship between the

elements can often be satisfactorily expressed by the following equality:

* The reader should not confuse this concept with the term as applied to sets

of matrices or polynomials. Dependence here is concerned wvith the statis-
tical relationships among random variables; see Glossary.
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= ( + £)(Xl1  ,Kb) +Kc

where

x 1 andx 2  = random variables representing the cost

elements;

£ = a random variable of zero mean and

independent of x

- the mean ofx ;and

Ka$ Kb, and Kc = constants.

In the above situation, x aud x2 are said to be (for the purposes of this

report) linearly dependent. The conditional distribution for x2 given

has the following properties: (1) when x equals its mean, the distribution

for x2 can be specified without constraint; and (2) the distributions for other

values of x are represented by a linear shift and expansion (or contraction)

of the coordinates.* The reader will note that the sum of linearly dependent

random variables x1 and x2 becomes:

x+X =Ka+ )x1i+ Kb 11)~ Kb+Kc+plI

which is composed of independent random variables.

Determination of Independent Variables

The variables Ka , Kb, K and e are determined on the basis of

information furnished by the analyst. Although there is more than one manner

*Thus

P~2/(xl =I)]=P( x2+1

where

a =Ka (xi 1 p,); bj~x~~
1-26
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of eliciting the necessary information, only one will be considered in this

report.

The analyst is called on to describe the conditional distribution for

x2 , given that x1 is at its mean value, p, . He can do this by specifying

values for the parameters of the linearly scaled four-parameter beta. From

these parameters, the four additive moments A , A , A3 and A4 can

be determined. The analyst is further requested to specify the amount by

which the conditional mean of x2 will change when x1 deviates from P,

by some fixed amount. The ratio of these two items (change in P2/ 1 /amount

x deviates) will be called m. Finally, the analyst will be asked to state

the amount by which the conditional standard deviation of x2 will change

when x1 deviates from ý1. The ratio of these items (change in •2/1/

amount x1 deviates) will be called m
a

The resulting relatinships become:

K =m K- L K =A-
a p Kb m c 1 Kba

2 A A
2 4

E, = 0 E 2= In E 3= E 4=

where the Ek terms are the additive moments of €.

In the special case where m is believed to be zero, the following
a

relation should be used:

x2 =p +•K(X 1 -P)+ e

In this case,

P2 = A1 Ka= m E1=0 E = A2 E =A3 E = A4
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If the analyst prefers to specify in (the ratio of the change in the

conditional mode of. 2 -to the deviation of x1 from ". to m ,the

following equation may be used:
m

where

A is the difference between the conditional mean and mode of

x, given x1 =

More General Form of Linear Dependence

Let xI , 2 t ..... xn be random variables which are linearly

dependent on the independent random variables a,, a2, ..... a. It is

desired to express the sum
n

xksk=1

as the sum and product of independent random variables. If each x can be

expressed as
m

j=1

where

A , B and Ck. = constants;

= the mean of a. ;and
Ui 3

= a random variable of zero mean andckj
independent of all a's and other eIs;

then the sum may be expressed by the following:
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Xk ýj - + Bj)[ (A ki +S kj)]+ C ki,
k=1 "= k=1 k=1

which is the desired result.

Dependence Among Additive-Multiplicati,,e Combinations of Independent

Elements

The situation sometimes arises in which independent random variables

reappear in more than one expression. A simple example is as follows:

xT 1 Y2 + 13 + 14

where the xk terms are independent random variables.

The terms in the above example, therefore, are not independent.

This situation, however, may easily be handled by factoring x1 so that

xT = x1 x2 + x3 + x4

More complex situations, however, such as

xT = X12 + x2X3 + 1x 3

cannot be dealt with as simply since complete factorization 110] is not

possible. In this case it is necessary to take advantage of the fact that

the expected value for the sum of random variables, whether or not they

are dependent, may be computed by adding their expected values. The

reader will recall that the kth multiplicative moment for xT is

M.kXT = (k) XT =E xk

where E designates the expected value.
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Hence k

Mdk (xT) =E x 1x2 +x 2 x3 + xx 3 )

The preceding expression may be evaluated by expanding the argument and

then substituting for the origin moments involved. For example,

M2 x12 x2+x22x32+x,2 x2 x + 2x12 x x2 + 2x22 xxA

+2x x2)
-312

M2(xl) M2 (x2) + M2 (x2 If2 (x3 >+ M2 (x1) M2 (x.,)

+ 2M2 (x1 ) 1I ) M 1 (x 3

+ 2M2(x " M~l() Mjhx3)

+ 2M2 (/.\ M1•(x 1) M ( V42)\

This process is most readily executed by automated means.
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APPENDIX II

PRODUCT OF INDEPENDENT RANDOM VARIABLES

if x and x, are two random variables with a joint probability density

function of P, 2 (xl, x2) and z represents some function* f x,, x2 , of

these two variables, the probability density for z is

p(z) = fl 12 F(5 x2)' x~ dx 2fl +O z2]

where

gl (z, x2) = the function that results from solving f ("1, x2) for

x1 in terms of z and x2 ;and

(altz)= the derivative of g1 (z~ x'j holding x2 constant.

In the case under consideration, f (x1i x2) x1 * x2 , P1 2 (x1 , x2)

P, ý 1) p2 (xýO and~ 1 z g, 0,x)=zx Thus

p(z) = P x 2 "x

If p1(xb= p2 (x a O when their arguments are either less than some

non-negative number, a, or greater than a + 1, the distribution for z

becomes

• This function must be differentiable and single-valued over the ranges of

x, and x2 where P1 2 () 1 x2) is nonzero. If the inverse function

gi ý2, px) is not single-valued, then the integral for- p (z) must be

app opriately broken into segments and the results added.
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U-

p In (7 IfI xI2  pIII pII II I

where

L = a, U = z/a when z a (a+1) ;and

L = U U= a+1, whenz a(a+i)

a+i

and a2  z (a.1)2 .

If we now define the variables and functions as follows:

a+1 a+i
lnx, =uIn n-a-+ina, lnx 2 =u ln +ina, lnz=w

12 2

Ina+1 + 2 in a
a

it follows that

Li U
U

w= In f gl (w-u 2) 2 (u2)du 2

Lu

where

L = 0, U =w whenw I ;and

L = w-l, Uu= 1 whenw 1.

The ranges of the variables are: 0, u 1 0 i u2  1, and

O0 w.2.

If u1 and u are considered as independent random variables,

then w =u + u4 , This relationship was utilized in Section IV when
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computing the exact solution for those illustrative examples that involve

produ-ts.

It-becomes evident from the central limit theorem and the -latter

relationship that the limiting form as n -. ,, of the distribution for

n
TT xkk=l

(where the xk terms are independent random variables, with a common

distribution defined for positive values) is log normpl. The log normal is,

of course, a skew unimodal distribudion.
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APPENDIX M

MOMENTS FOR SUMS AND PRODUCTS OF INDEPENDENT VARIABLE'S

The properties ascribed to the additive and multiplicative moments

defined in the glossary will be demonstrated below.

ADDITIVE MOMENTS

The additive moments A1 , A2 , A3 , and A4 for the sum of inde-

pendent random variables x1 and x2 are defined as follows:

', ~ A- a(1) = E~x1 +x2 ) ;

A- E
(2 )

A3 = (3) = E( 1 - Il + x2 3 and
3 s4,3ts2' 24 2 +

A4 ( 3= E Xl-•l+x 2-)2_ - 3E 2xl. -l+x 2-P2) 2

where

(k) = the kth origin moment of the sum

(k) = the kth central moment of the sum

ýt1 and ý1 2 = the means of x, and x2, respectively

E = the expected value
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Evaluation of the right-hand members of the above equalities yields

E (x,+xý E (Y+ 1 (2),)+ =E + E & y,+ ;ý

2 2 2
E(X-.i+X2 -•) = E(xi-ul) + 2E(x-•) E (x2- 2)+ F•2-1)2

2 2
= E(X 1 -i) + E-(x 2.-P2) -,

P(2)+ (2)

E -p(1 i+-x 2-l 2 ) 3 = E(xll) 3 + 3E (X-Ul) 2 E( 2 "p2)(X 2

2 3+ 3E (xI-pI)E (,2 + E

E(3 ) + E (3)
= ,U + P 2

E - 3E 2(Xll+X 2 -_p2) 2 =E 01-P

+4E (X 1 ) 3 E&112-)

+ 6Ex 21 ) 2 E/x 2 -2)2

+ 4E -X1-5) E
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2 ,, I

"3. "PJ,) P_ 3[11

3 + 2(4)'3[1

where

S(k )a 2  - the kth origin momenits of x and x2 , respectively;

-and
(k) 'P(k)- the central moxments of x1 nd -x2 respectively.

JA2 thekth c

It can bhie en from the above, that-the kth- additive -moment for a sum
thof independent random-variables equals -the sum of the kt additive moments

of the variables.

_MULTIPlICATIVE MOMENTS

The multiplicative moments , M M , and M4 for the

product of independent random variables x and x2 are defined as

follows:

where

)is the kt" origin moment of the product.

Evaluation of the right-hand member of the above equation yields:

EQ(Xl.Xk= E(x k E(x k= a(k) a2(k)

whereS~~~~(k) (k)ktorgno 1adx

CL1 and -2 are the kth origin moments of x1 and x
respectively.
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It is obvious, therefore, that the kth multiplicative moment for a

product of independent random variables equals the product of the kth multi-

plicative moments of the variables.

CONVERSION BETWEEN MOMENT SETS

The following formulas show additive moments may be generated

from multiplicative moments, and vice versa:

M1 =A1l M2 =A2 + A1, M3 =A 3 +U3A1 A2 +A 13

1 A2 2 3 4

A 3A32 4M1M + 6M 12M 3M 14

4ý M4 2 1 3 1  -2  1
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APPENDIX IV

DETERMINATION OF THE PARAMETERS
FOR THE APPROXIMATING LINEARLY SCALED BETA

Given the first four additive moments, a linearly scaled Beta distribu-

tion is uhiquely defined. To determine the four parameters, a, 0, a, and

b (see Glossary), the following procedure may be used.

1) Solve the following two equations simultaneously for a and 0:

2 2
A3  4(a-ý. (4+0+3)

A2  (c+l)+ (0+)(cx 24)

4 j 3(a+0+3) [2 -(a+0+2) 2  + (04_1) (+ )(~ r)

*2A- (Qa+04) (j+•+) (ccf3+4) (a+0+5)

where

a < when A3 >0;

cx =when A3 = 0; and

a > 0when A 3<0.

2) Substitute a and 0 into the equations shown below;

an an
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where

Phn +2 ,and

(cr+1 (R+3)
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APPENDIX V

ILLUSTRATIVE EXAMPLES

INTRODUCTION

The examples shown in this appendix demonstrate, under a variety of

situations, the integrity of the approximating procedures (see Section II)

built into the computer program. The results of the procedure are compared

with the results obtained from actual performance of the convolution operation

for the sum of independent random variables and with the operation described

in Appendix II for the product of independent random variables. The latter

operations were performed on an analog computer.

EXAMPLE ONE

Four independent random variables describing the uncertainty in cost

elements all have the same distribution. This distribution can be represented

by a linearly scaled beta with the following parameters: the most likely cost

is 100 thousand dollars, the most optiminlic cost is 50 thousand dollars, the

most pessimistic cost is 250 thousand dollars, and the central range is 110

thousand dollars. The uncertainty for the total of these four costs can be

examined. A plot of the probability distribution for the total cost is presented

in Figare 7.

EXAMPLE TWO

Two independent random variables, describing the uncertainty in cost

elements, have the same distribution, which can be represented by a linearly
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SOLID LINE: RESULTS OF COMPUTER PROGRAM-

DASHED LINE: THEORETICAL (ANALOG PLOT)

200 400 Goo 800 1000
THOUSANDS OF DOLLARS

Figure 7. Plot of the Sum of Four Independent Random Variables
with Beta Parameters
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scaled beta. The probability distribution for the sum of the two costs is

desired.

Four sets of parameters for the linearly scaled beta are considered.

(The values for each parameter are shown in thousands of dollars.)

_ _ _ _ __ _ _ _ _ _ _ _tr,Optimistic (XL) yr°Iable (Xc ) Pessimistic XH) anentR, )

50 100* 150 64

50 100** 150 19

50 100*** 250 110

50 100**** 250 38

The distributions for total cost appear in Figures 8 to 11.

EXAMPLE THREE

Two independent random variables, describing the uncertainty in

planning factors, have the same distribution which can be represented by a

linearly scaled beta. The most pessimistic value for each of the random

variables is 200 percent of the most optimistic value. The probability

distribution for the product of the two costs is desired.

*The normalized form of this distribution appears as Curve lI in

Figure 1.

**The normalized form of this distribution appears as Curve I in

Figure 1.

***The normalized form of this distribution appears as Curve M in
Figure 2.

****The normalized form of this distribution appears as Curve I in

Figure 2.
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SOLID LINE: RESULTS OF
COMPUTER PROGRAM

- -- oDASHED LINE: THEORETICAL_

(ANALOG PLOT)

100 200 300
THOUSANDS OF DOLLARS

Figure 8. Plot of the Sum of Two Independent Random Variables
with Beta Parameters
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SOLiD LINE: -RESULTS 'OF COMPUTER PROGRAM
DASHED LINE: THEORETICAL (ANALOG PLOT)-

I VI

-II

100 200. 300

THOUSANDS OF DOLLARS

Figure 9. Plot of the Sum of Two Independent Random Variables
with Beta Parameters
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SOLID LINE: 'RESULTS OF COMPUTER PROGRAM

-DASHED LINE: THEORETICAL (ANALOG PLOT)-.
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THOUSANDS OF DOLLARS

Figure 10. Plot of the Sum of -Two IndependentRandom Variables
with Betd Parameters
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'COMPUTER PROGRA.ML DASHED--THEORETICAL_-

(AIALOG PLOT)

112±II

100 140 180 220 260 300 340 38o0 420 460 500

Figure 11. Plot of the Sum of Two Independent Random Variables
with Beta Parameters

-46-



- ---- ------

Foirý sets of-param!ters- for the lirwarly scaled beta: are conisidered.

- .Most Central
Oj~tinmistie (XL) Probtble XL) 'PessimistiqA yX~ Rgj R)

3. .5*2- .64

1 l)1,5#*2.1

1.1125*** 2 .55

10 .25***2 .19

The distrihiutionsfijor the products aippear in !Figures 12 to 15.

EXAMPLE FOUR

This example is- similar to Example, Three With the exception that the

most pessimistic value in this case -is. 120-percent. of the most optimistic

'figure. Four_ ets of. paraeters for the linearly scaled beta are -considered:

most Central
Op~timistic (XL), Pro bable ffp) Pessimisticl. A Rak CA

5.5* 6 .64

5 5. 5** 6 .19

5 5. 25*** 6 .55

5 5. 25**** 6 .19

The distributions for the products, appear in Figures 16 to 19.

*Normalized form, Curve MI in Figure 1.
**Norm~alized form, Curve I in Figure 1.

***Normalized- form, Curve. II in Figure 2.
****Normalized form, Curve. I in Figure 2.
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, , , i iI I I I I I I- I i

SOLID LINE: RESULTS OF COMPUTER PROGRAM
DASHED LINE: THEORETICAL -(ANALOG PLOT)_-

I -I

I L

I 2 3 4

Figure 12. Plot of the Product of Two Independent Random Variables
with Beta Parameters
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-SdLID L'INE: 'RESULTS- OF COMP0UTER PROGRAM
DASHED.LINE;. THEORETICAL (ANALOG PLOT)

1.60 135 1.90 2.05 2.20 2.35 2W5 2.65 2.60 2.95

Figure 1.Plot of the Product of Two Independent Random Variables

with Beta Parameters
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SOLID LINE: RESULTS -OF. COMPUTER

.. 
DASHED LINE: THEORETICAL

"(ANALOG PLOT)

I+: , + t .. . 1,

I 2 3 4

Figure 14. Plot of the Product of Two Independent Random Variables
with Beta Parameters
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SOLID LINE: -RESULTS OF COMPUTER PROGRAM
DASHED LINE: THEORETICAL (ANALOG PLOT)

1.00 1.15 1.30 1.45 1.60 1.75 1.90 2.05 2.20 2.35 2.50

Figure 15. Plot of The Product of Two Independent Random Variables
with Beta Parameters
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......l~ .~ .. .......... ....

SOLID LINE: RESULTS OF COMPUTER PROGRAM
DASHED LINE: THEORETICAL (ANALOG PLOT)

25 .26.1 27.2 26.3 29.4 30.5 31.6 32.7 33.8 34.9 35

Figure i6. Plot of the, Product of Two Independent Random Variables
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SOLID- LINE, RESUL15 OF COMPUTER PROGRAM
-DAtHED LINE: THEORETICAL (ANALOG-PLOT).

-4-i7A

II
27.75 21130 28.85 29.40 29915 3Q50 31.05 31.60 32.15 32.70

Figure 17. Plot of the Product of Two Independent Random Variables
with Beta Parameters.
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, I I I I I I I I I I I

ISOLID LINE: RESULTS OF
-," " COMPUTER PROGRAM

I ./ ,t•,qEO LINE: THEORETICAL
~(ANALO)G PLOT).

25 26.1 27.2 28.3 29.4 30.5 31.6 32.. 33.8 34.9 35

Figure 18. Plot of the Product of Two Independent Random Variables
with Beta Parameters
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SOLID LINE: RESULTS OF CUMPUTER PROGRAM
DASHED LINE: THEORETICAL (ANALOG PLOT)

25.0 "25.5 '26.0 26.5 21,0 27.5 28.0 28.5 29.0 29.5 30.0

Figure 19. Plot of the Product of Two Independent Random Variables
with Beta Parameters
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APPENDIX VI

DESCRIPTION OF THREE 7090 FORTRAN PROGRAMS

INTRODUCTION

This appendix describes a series'of three 7090 FORTRAN programs

(see Figure 20) which convert acost analyst's subjective feelings about

uncertainty in, cost estimates for system elements into quantitative data to

express the uncertainty in.the totalsystemcost.

DESCRIPTION OF THE PROGRAMS
o

Program I

This progrram (see.Figdre-2i) accePtsgas inputs-,the fourparameterS

specified by-the, aalyst for each elment, and ,from ,these-computes •alinearly

.scaled beta-distribution which approximates the distribution described by the

parameters for the cost of the ý element. This distribution-is presentedin

terms of the parameters describing the shape of the curve and the first four

additive moments of the distribution.

The four input parameters are:

(a) XL - the lowest cost (lower I percent tail);

(b) XH - the highest cost (upper 1 percent tail);

(c) XP - the most probable cost (mode); and

(d) CR -- theplength of the 80 percent central range

(upper .10 percent tail minus lower 10 percent tail).
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IREPARE 1
PROGRAMZ I

INOUT CARDS
PROGRAM I

rREAD INPUf CARDS
I ~XL, xm, xpCR

Iij ROCSSI

I ~COMPUTEI

I CARDSOUTPUT

I~~ ~ ~ I :kA

L..----------9..

FiguER20.TBOckDaraS oPorms1 1 n 1

ON.MOMEN1
OUTPU I ENCA`RD, OUTPU

INTO'PtOGRA



I POSIAD NEX MAX CR EXCEEDE

COMEN XLS60u + 3.96. U

/EN-0 DALF L?-150.u YES.1OUT
C L R.ý03YES COMMENT, SET UPL

KXP-XLJX-XP

POSITIV.E.' MAX 6RP EXCEEDE

-~O ~ .6(6 1-63rf

fiur 1.0 Program 1: Ma9In Rutin

0.3 -4 58-ckt

'I-X -Ll. H ,X~



COMPUTE

COPTEST~~-

K-;O.5

4Ee-~)(+~+322* ~ ~ ~ ~ W2 RI aII$I(as
P2 ~N -sY.p3tt++2)+a1(e)1. ) TR O

- (a+II~+I)a4P44Ta.EST

Figur 21.0 cn dd

YES YESUT-59-



NOTE: The cential range may not exceed

0. 8 ! x) - 0. 6 0 -i 5pX)

If it does,, the program will skip the case and go on to the next case. Th.

beta distribution is domlputed as follows. First, the standard de-iation a

is determined. Compate

~~ Xp-XL

XH.XL

CR
R N +XAXR

ULt

Then 0.39-C

CF -a
1+ ACR"

where
2

A = 0.148 - 0.603U + 3.98U , and

a = 1.78 - 3.9U + 29.16U2.

These equations were determined by ourve-fitting, using several different

values for the variables involved. Then determine

X -X
P L

K---•
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The parameters a and 0 are then determined by finding the real solution

of the following* pair of equations (see Appendix II):

a2 =(M+i) jýFi)

W*+2) 2•(a4+3)

For each pair of roots, compute

• +O+ 2

Let
. ~ XHXL -

and find-all a, .O whichsaisfy

0_< H"°S< is

X- 0.5

(In general, there will -be only one such pair.)

When this pair (a, ) is determined, compute:

2

P (+)-(0-1) (+*4) 2

*The equation is solved in the equivalent form:

C0 (K+1)3 3+L[7c' (K+1)' -K]0 2 +(1602-1) (K+1) 0+10 - 1 0
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and

3 (d+0+3) L2 (Cý02)' + (ai-1) (0i-1) 4,0*f3-4)]

All necessary parameters are thus computed for determining the four

moments.* These are computed as follows:

(a) first additive moment = mean = X = X +

(b) second additive moment (standard deviation) =Y= X ] 2

(c) third additive moment = V - +• ... _>X Si+ sign- "<~X ==m)==-.sign; d

(d) fourth additive moment= W =(R-3Y 2)

Alsoinclud6edinthe output are S 8-and -V 4(the standard-deviation).

Program:

The analyst now has cost distributions (summarized by four moments)

for eachof the elements-of the system under consideration, *He specifies the

additive-multiplicative combinations of these distributions that will yield the

total system cost, and inserts the moments of each distribution into Program

II (see.Figure 22). Program. I! computes the specified combinations and

prints out -the moments of the total cost distribution, as well as certain other

subtotals of interest to-the analyst.

*In the main text, the four additve moments are referred to as A , A
A3 , and A4 ; in this appendix they are referred to as X, Y, V, and W,
respectively.
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Additive- Multiplicative Combinations of Independent Random Variables

Independent random variables D1 and D2 are given; the distributions

for each summarized by its first four moments. Then

DI= D1 ý1. Y1, Vi, W1) ,and

D2 = D 2 ( ý 2  2, 2'V2 w2)

The, distribution for D1 + 2 is computed by component adding

moments- on the basis 'of components; that is,

D +D=D 1+X, Yx +Y2' vIv2. w .

D+ ~ i 2' ~~ 1

The %distribuftion, f6r PD D is computeOdby the following equatiOns..*

D1D2 = DM(X, Y, V, W),-

where

X = x+X2

12 12 2 1
=Y 1 YIY2 + X1I Y 2 + X22 Y 1

V=Vo 3 v Q 1x 2  +v~xY3 + vX + V2x 3 + 6X1Y1X2Y2; and

wW w*W2 +3 (W1Y2
2+w2Y12) +4 (wýX2V2 + w2X1Y)

+6 x•+•2•+~ •2- wx +w•x 4
+6(W x2 2 2 +w2IY1+ 1 12 Y2 W12 4+w21I

*This is the result of solving simultaneously the equations shown in

Appendix HI.
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+ 12 (II2X 2 V29 + Y 22XIVI +Y Y12X2 2 Y2 + Y 22X1 2Y1I +X XV1X2V2
+ X V1X22Y 2 +1 2V2X1 2 Y 1)

These formulas are equivalent to converting the additive moments into

origin moments, multiplying these origin moments in terms of components

and reconverting the product moments to additive moments.

AdditiVe-multiplicative combinations -of distributions may be computed

by, evaluating a compositelterm as in an algebraic expression. For example,

to evaluate D1 (D 2 + ,3DD4) , first evaluate D3D4 , add D2 to the result,

and multiply the last result by D . NOTE: This expression may not be

evaluated in the form

D P2 +-IDD 4 PA '

since the two product terms are-not independent (both depefnd on D1)

Additive-multiplicative combinations of distributions Are specified for

the program on two levels: lines and groups (see Figure 23).

Lines

A line is defined as an additive-multiplicative combination of distribu-

tion of the following form:

AAAfAA[AA(o+AO)+A A 0 + A 0 +0] +A o+A o+A 0+0]
123 45 -6 7 89 10 111213 14 15 16 1718 19 20 2122 23

where each "A" or 11011 symbol represents a distribution specified by its

first four additive moments X, Y, V, W. The distribution for "A" is
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LINES ."...•

"GROUP I
GROUP TOTALS

J- I

LIkEi A

-GROUP TOTALS ,.. j82 GROUP 2

LINES

GROUP TOTALs -- GROUP N

Figure 23. Generalized Cost Structure Built into Program Il
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defined by the moments (1, 0,0, %),* for "0" by the moments (0, 0, 0, 0).

It may be observed that:

(a) if "0" is added to any distribution D1 , the resulting moments

are simply those of the distribution D1 ; that is, 0 + DI = D1 ;

(b) if "0" is multiplied by any distribution D1 , the resulting

moments are (0, 0, .%, 0); that is, 0D1 = 0; and

(c) if "A" is multiplied by any distribution D1 , the resulting

distribution moments are simply those of D1; that is, AD1 = D

In other words, "0" and "A" resemble the 0 and 1 of ordinary arith-

metic. Because of this, the line total operator as it stands is equivalent to

0. If any "0" were replaced by some D1, the line total would become- D1 .

Lines are specified to be equivalent to certain additive-multiplicative

combinations of distributions by-the following technique: the analyst is

permitted to replace any term -in the line total operator by whatever distribu-

tion he desires. Such-substitutibn will alter the value of the ýoperator. For
th th th.,x.inple, by replacing the-7, .8 and- 10 terms; with-the distribution D- ,

D , and D respectively, the -line will bDe made- equivalent to the combi-

nation D1 (ýD2 +P3) This can readily be seen by representing the operator

symbolically:

111t.1D( 2 1D+ 1.1.0 + o +01~+ -0 +.0 +1.0 + 04

Application of the obvious rules reduces to this

ID1 ( + D 3) + %] D1 (D 2 + D3)

*The slashed zero (0) is used to denote the riumericaLzero to avoid

confusior
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Therefore, simply by specifying the line and the term into which a given set

of distribution moments are to be sulbstituited, a large variety of combina-

tions can be evaluated.

Groups

On the second allowable level of combination- of distributions, the

various, line totals -are separated into groups, -corresponding. to subsystems

of the system under conside'ration. First, all-Wline- moments for a group are

computed, Then these moments are Summed by :components -to produce a.

term S. This term may be combined with other distributions in-the.folldwing.

operators:

(Gi) AS(A + AO)
12 34 ,and

(G2) AS(AO)
1 34

Combinations are specified, in the same. manner,' sedfor. !iiinbs: .any - -Aor

o may'be replaced by the moments of .any distribution. Aterm replaced In

the-(Gi) operator is also replaced inthe ,(G2) operatorby.the sme moent

except for the second termi which appears onyinthe-(Gi) operatr, it may

be noted that if no term is replaced in-theoperakt• , thbe.-re slt of(G#) is :S

and the result of (G2) is 110."

Final Total

All moments obtained from:the.(Gl)-oPerator-are.added-by .c.domponents'

to give the final total. Thus, the (Gi) group tot•.tshoiddb6eso;.defined- that

the total system cost distribution is the- suremof allM of.these -totals.
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Program Il

From ,ProgramliI, the' analyst has moment sets- summarizing distribu-I

-tions for subs'ystemsg and- total, system cost uncertainty. These Momfenit.sets

ake now inserted'into~r Prgam M.. (see -Figur~e 24), which conVerts. the

mnoments into the beta: distributio'n parameters and' the bounds for- thecurve

and for any sPecifiU&Percentage, tails.

-From the ipu moments, X, Y, V And W for each case, determine

'y3 02

- Te flloin eqatinsare n.ow,-toz be soved for ndi fh-beta

-curve, parameters:

The consktant and' detriewehe rntter s'-en

-the solution to these equatiohs.) If -there -is a: solution-to these e6quations6,

use to compute for the normalized ýbeita curve:.

=N (normalized- mean)

*For a unimodal beta distribution, CL and must be positive and real,
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COMPUTE

NO .NGTV POSI.TIVE ,-N
ALPHA>GETA'" V A.LPHAkBETA

ALPHKWBETA

-IR I

-CA LIm
R RI
ETIN. ITH

I -~.* .L.

1 10-225".

I I-,._

I ECOMANTE-
ALPA9A

.2ARQ-5

Figure 24. (concluded)
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N (~-~2) ~(norm~alized standard deviation); and

X = (normalized mode)

The normalized curve must be -integrated to determine the total area

under the curve: Integrate

bHa
AREA Hb /Xl i-.XNf ý7() (U-)L

where

bL rqu Q jj N4: N).

bH = n(.N+4aN)

This integration is pefformed numerically with, Simpso'hs rule. The winber

of'intekvals used is NINT, * an input (800 is suggested).. Determine the

desired area Under each tail:

AA A x AREA,

where

A is an input specifying the fractional tail desired,

*Number of intervals to be used fr the Simpson integration.
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The curve is integrated again, one interval at a time, from each end,

until- the X-values which are the bounds for the tails are reached, These

are called XNCL and XNCH, respectively, From the bounds for the normal-

ized curve, the bounds for the scaled beta curve are- then determined.
ComPute:

- " (standard deviation)

Then

the.lower boundis, XL =

aN

:the upper bound is XH = +

,the61ower_ tailbound is XCLL ..(X.-NNQ; and

he.ui~ppatal~bound~is,. XCH • (XNCH••NJ)

USE -OF rTiI, LII~

The input- for Program I consists of the four parameters specifying

the uncertainty in the cost, ofeach.inhdividual system element:

XL = the lowest cost(loweir 1.percent tail);

- Oeh1,est c6st (upe• 1percent tail);

-73-

I



Xp = the most probable cost (mode); and

C R = the length of the 80 percent central range (difference

between upper and lower 10 percent tails).

The-data-f6ireacheIement's cost uncertainty is punched on a separate

input.card,. Each card.has-the following format (refer to Figure 25):

-Column- 1is blank,.

Columns 2 to 24.contain, a Hollerith identification which the user may

spegify to identify the data. This identification- will be printed out

before the data. for the case specified by the -card when the program

ouput is presented.

Columns 25 to 32 are left blank.

- Columns 3310t72- contain the four-parameters XL, X ' , and CR0

'The .data must be i-E-f6rmat, contained-in a field of ten columns.

The first colu of, each fieid.should be- blak (columns 33, -43, .53,

-63), The;second con•tains ithe Sign (if positive, it may be-omitted).

The-btirdthrough-sixth, columns contain the -three-most significiant

-digi of the number in the form X.-XX, The-seventh through tenth
columns contain the power-of A0 by which the Significant digits must

:be multiplied to-give the actual number. The exponent must be in

the form ERXX (+ sign may be left as blank). Thus, the entire

number is shown by:
•: (• . (X) (X) E :•(X) (X)

IMPORTANT: The last significant digit of the exponent must be in the

tenth column.

I
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The cards may be arranged in any desired order; the cases will be

processed in the order of their appearance in the deck. Following the card

for the last (physical) case a special card with -1. VVE ± qq punched in

columns 44 to 53 must appear. This signals that all data has been processed,

and the program will exit.

Program Deck

T'h•. program deck should have the following sequence of cards:

InI JOB

in FMS

BINARY PROGRAM DECK]

* DATA

[ DATA CARDS3

OCR=-"1.0 card]

III ENDJOB

Output

The output data (see'Figure 26) will be arranged in the following

manner. The identification will be printed at the head of the data for

e-.ch case. The input data will then be printed; following this will come the

output data:

X = the first additive moment (the mean) of the approximating beta
distribution;

Y = the second additive moment (variance);

V = the third additive moment;

W =the fourth additive moment;
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-�th n • p ~m'.t whin~h drtei.rnine the shane of the beta

curve; and

)/- = the standard deviation

All data will be printed in E-format to three significant decimal digits.

Program II

It is important that the user read the previous discussion of Program

H for an understanding of how to use this program.

Each group is processed separately by the-program, so all cards

relating to the same group must be placed together. For each group, the

following input cards must be present (see Figure 27):

The first card in each set of group cards must have a positive number

JJ (preferably the number of the group) in Column 5. (If it is a two-

digit nmber, use columns 4 and 5.)

The next set of-cards specifies-the line datafor this groupi There is

one card for each set of moments -which are to be used in :this group.

Each card has an identification field in columns 2 to 24 as in

Program I.

Column 25 is blank.

Columns 26 and 27 contain the group number, J, for the present

group. All cards for one group must be placed together.

Columns 28 and 29 contain the line number, I, in which this particular

set of moments is to be combined. The Vs in each group must be
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arranged from 1 consecutively up to IMAX, which cannot be greater

than 5%.

Column 30 is blank.

Columns 31 and 32 contain the term (column) number, K for-which

the moments on this card are to be substituted in-the line total

specified by I. The K term may be any integer betweenl1 and 23,

inclusive.

Columns 33' to 72 contain %le moments X, Y, V, W Which are to be

substituted for term K in Line I in group Ji These columrnshave

the same format as on the Program I data cards.

The group tot•i, cards follow the line cards. These have the, same

format as the line cards, ,cxcept that:

I is always $ for a vroup total input; and

K is the term number for which the moments on the card will be

substituted (K ranges from 1 to 4, inclusive)i

A card which is blank, except for a 11-1" in columns28 and 29, follows the

last group total card (or last line total ca-.d if there is no group total data)i

This signals the end of the group.

The cards for all subsequent groups are arranged in the same way.

A card which is blank except for a. $ punched in column 5 appears after the

I = -1 card for the last group. This signals the end of the data.

Program Deck

III JOB

Ill FMS

~-81-
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ZEQ

[BINARY DECK]

DATA

JJ = 1] card

Line Total Data I> >]

Group Total Data I =

ý[ 1.1i card

JJ =2 card

etc.

Ij2- i 1 card

MI ENDJOB

The line total input data for the first physical group in the deck appears

On the first page followed by the group totaloimput, if any, for this group on

the next page (see Figurie 28). Each entire card will beprinted out except

for the JJ and I = -1 cards.

The line total moments X, Y, V, W for this group are shown on the

next page. In addition, three characters Willbe printed:

J = the group number;

I = the line number; and

L - 0, to indicate a line total.

The X,Y,V,W are interpreted in the same way as for Program I, except

that now they are moments representing the distributions of random vari-

ables which are aggregations of other system element costs.

The group total output for the group appearvi on the next page.
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J = group number

I = 0, to indicate group total;

L = 1, for the (Gi) total; and

L= 2, for the (G2) total, r

All groups will have their output in this form. After the last group

total output the final total will appear. Its characters are F
J=0; = O ;ý L= 1.

I

All output data will be punched on-cards for direct insertion-fint

Program IWi.

Program H

input

The first card specifies the two parameters.Aand afNINT crthe

integration process (see FigUre,29):

Columns 1 to 5 are blank.

Columns 6 to 14 contain A, the fractibonof the -total!area ,desiredt

in each tail.

Columns 15 to 35 are blank*

Columns 36 to 38 contain NINT.

Rest of card blank.

The next cards contain the data to bepirocsseduby the program.

Columns 2 to 24 contain identification.

Column 25 is blank.

-84-



Lea-

2 0

-85--



Columns 26 and 27,' 28 and 29, 30 and 31, and J-, I, and L indicate

the control characters prinhted With Program II output. These are

merely-for the -purpose of identification; they are not used by the

program.

SColumn 32 is blank.

CoIumns 33-to,72 - .X, Y, V. W are in. same -format as Programs I

A ca.rd withinine coliiim•s .(44. to.52).containing a -i.#OE+00 must

Sa ppear after'these-cards. This signals the end of the data.

Proram Decdk

SIII JOB
Ml jFMS

S* XEQ

'PROGRAMMDECK]

DATA

[DATA CARDS]

[Y= i.% card]

M ENWOB

Error Returns

A number of: conditions will, cause the program to indicate that no

solution can be found for the present case. When this happens, the program

will proceed with the next data, because the distribution specified by the

moments for this case cannot be converted by the program.

8

.1i -86-
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0 The output data (see Figure 30) for each case will be preceded by the

identification field and the input data. The output will consist of:

1 the parameters* determining the shape of the beta

8 curve;

t) the bounds* for the linearly scaled curve;, and

XCL the bounds for the 100A percent tails.

*Refer to the definition of the linearly scaled beta distribution in the

Glossary; a = XL and a+b = XH.
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-•APPENDIX 
VII

DETAILS OF FORTRAN SU13ROUTINES

PROGRAM I

Program I requires the solution of a cubic equation. The routine
CUBERT (see Figure 31) is used for this purpose.

ENTER

190-1922

BY A (FIRST
COEFFICIENT?

201-0302

CMPUTE

-89-

2- 
20zoz zo3-22

209-328 
20-1

Of MAGI 12,3 / I EASLI, QREAL !

200 ... -

RETURN

Niure 31. Program 1: Subroutine CUBERT

-89-



PROGRAM III

$ubroutine SETUP

The subrotixne SETUP (see Figure 32) deternmines whether a solution

exists to the equ.Itions in Program mT for $1 (a, 8) and 82 (a, a). It

checks certain criteria on 01 and 02 to determine the nature of the equa-

t'ons for a and 8 as shown below.

1) The program will skip any case for which is greater than 4 or

82 is greater than 9.

2) If ý is less than 0. 01, no iteration is necessary. In this case,

the following checks are made:

(a) If 82 is less than 2.9994, then the final solution is

50 2 - 9

(b) If 82 is between 2. 9994 and 3. 0015, the final solution -is

approximately

S= 8=5¢¢

These are the answers used in this case.

(c) If 82 is greater than 3.0015, there is no solution, and this

case will be skipped.

3) If 81 >0. q1, 82 is compared to 3. V1 with the following results:

(a) If $2 is less than 3. V1, iteration is necessary, and procedure (4)

is used.

-90-
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ENTER

/A 0 R J 2  YES p>4 NO

SIYE :s 00 NO 8 < 3.001 YE.GESNO
I CO PUTCE

Z(3-02) 0 294SKPa I (OD)

WRIT OUT

REUR

I a : 5000.0025N

Fiur 320.Prga 11:S rotnSEU

-91-8

no 02< 2929 YESWRITE OUT SE"S

-- ISKIP THIS CASE

a 5182. -9

50- 25 8 z a0NSW a I,;

(RETURN)

Figure 32. Program I1 ]1: Subroutine SETUP
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If 2 is greater than 3. OV1, then the trial solution for 0 is + =.

In this case, equations are derived for 1 and t2 with ,

and the value of a determined in each equation. The equations

are:

O ( 2 - 3

If a > a 02) , there is no solution possible, and the

case will be skipped.

If aw () < aw2'then the number 1 2 [a=ý 1 ' =* 3

- 02 J = beta is computed. Should p < 0.0025 and

a (P 10 4 , then this a is the solution for a, and 108

is used for 0.

If either of these conditions is not satisfied, iteration is used,

and the program'proceeds according-to the next step.

4) When iteration is used, the initial guess for a and 0 is deter-

mined thus:
(a) I•2 <S 2. 929, then the guess for • is

52 - 9

a = p/2 is used for the RAFSON routine and a = 0 for REDOIT.

a -92-
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(b) If 82 > 2.929, then a = 50 is used for REDOIT, and a =25,

= 50 for RAFSON routine.

If SETUP determines that an iteration is necessary, the solution of

these equations is obtained through an iteration method using an alternating

procedure between the Newton-Rafson method and binary search in two

dimensions.

Twelve iteration steps are first attempted with the Newton-Rafson

method; the initial guess on a and $ is either specified by the user or is

determined internally if the user so desires. If this method fails to converge,

a closer approximation is obtained for the initial guess using one step of the

binary search, and twelve more steps are performed with the Rafson method.

If this still fails, another closer initial guess is determined with two steps in

the binary--search, and twelve more Newton-Rafson steps are taken. Finally,

if-convergence is still not attained, ten steps of the binary search are taken.

Subroutine RAFSON

This subroutine (see Figure 33) iterates for the solution to the equa-

tions

2-'4(a--p)2 (CL+0+31

(1) (&+1) (cL+fr+4)2'

3(af+O3) L2 (aL+042) 2 + (ai+l) 01-&
' (a+i) (Oil) (a+ 0 +4) (a+f+5)

by the Newton-Rafson method.

An initial guess is made by the SETUP routine, with this (a, ), the

first partial derivatives of these equations are computed:
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2
~+)(0+1) (Lý4

~1 ~0i with Uand 0 interchanged;

2+0 2 2 2

-2
62ACLL2_+f+2O-i ti1B4-291

a2 ~
=wWith a and 0interch~anged.

Witthhese, th Icrements or &a ad Oý are determhihed using the
relations -of the J4ewtonj-iýafsnm.~ethob&

a 2
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a n d ='- ( 0 2 - - 02 1 a

Then new values of 6 and • are computed by

a=a+Aa, 0=0+60

and 01 (a, 0) , 02 (a, 0) are computed. If these do not satisfy the criterion of

0.01 percent, the process is repeated up to a maximum of twelve times each

time it is called.

Subroutine REDOIT

In the event that Newton-Rafson iteration fails to converge, this sub--

routine (see Figure 34) is used to compute a guess for RAFSON that will be

closer than the last. The routine is also used to attain convergence if over-

flow or divide checks makes RAFSON diverge.

The procedure is a binary search in two dimensions. An initial guess

is computed by SETUP. Each time after the first, the last value is used as

the guess.

The initial 0 is held fixed, and a is incremented by 35 percent, until

the last two values of 1 (a• , fall on opposite sides of .1 . (f after 20

times no Interval containing the solution exists, the program exits and skips

this case.)

If an interval is found successive, linear interpolations are performed

until the computed 1 is within 0.1 percent of the desired value (maximum

of 10 times). This completed, the same thing is done with 8 , holding the

newly computed a fixed until 82 is satisfied.
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S1,BETA

REPEAT FOR BETA

WITH ALPHA FIXED

NO. (c YcUEd)

680

,• .;.To 'o •U11

RIETUAN, •XN

Figure 34. (concluded)
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With the new (a, ( (a, 0 is computed. If the results are within

0.1 percent of , , set the indicator to V and return; if not, the process is

repeated. The number of times the process is repeated is a function of the

number of times RAFSON has been used:

1 time - 2 times

2 times - 4 times

3 times - 8 times

4 times - 12 times

NOTE: On the last trial for REDOIT, a 1 percent criterion instead of 0.1

percent is used. If convergence is not attained after the maximum number of

steps, set the indicator to 1 and return.

The routine GASHUN performs the computations for the normalized

beta curve.

Subroutine GASHUN

This subri utine (see Figure 35) computes the mean, standard deviation,

and tail end pointa for the normalized beta curve. The mean
a+1

PN =----p'2'

and standard deviation

(N

are computed.

Then the following integral
bH C

is to be evaluated;
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COMPUTE MEAN AND STANDARD DEVIATION

111i32
NO ISO<

RETURN 9a
X(1

33-15 YES.

SET bL'O OR# -4o1
WHICHEVER IS MORE POSITIVE.

SET bh"1 OR# +4 o

WHICHEVER IS SMALLER.
SET INTEGRATION RANGE EQUAL TO

bh- bL.
SET UP INTERVAL INCREMENTS.
COMPUTE X IN THIS INTERVAL.

1117 ., -

O0.2 FOR NUMBER
OF INTERVALS AND
COMPUTE AREA FOR

EACH INTERVAL

COMPUTE AREA
121-126 OFTHE JfhINTERVAL

129 -2
CCU ULATE
OTA. AREAA

TDEL =AREA

UNDER DESIRED
TAIL

/ DO 3 UNTIL

/THE LOWER BOUND
\OF DESIRED RANGEIS DE TERMINED

DO 6O NTIL \
STHE UPF'E BOUND\\OF DESIR. 0 .•l

IS ISDETERMINED

A-13

Figure 35. Program I11 : Subroutine GASHUN
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where

bL-- max ,PN--4ca

bH=min 1,(N +4CN•

Simpson's rule is used to evaluate the area. The formula for the area

under the curve over a particular segment is:

A = h [Y(1) + 4Y(2) + 2Y(3) + 4Y(4) + Y(5) ,

where the Y Is are five Y-values taken at five points within this segment on the

X-axis.

The area for each of NINT segments (NINT is an input) is computed and

added to the total of all previous ones to get the total area. Then the seg-

ments are accumulated until their total is greater than A times the total

area (A is an input). The X of the last segment is the lower bound (KNCL)

for the tail desired. The upper bound (XNCH) is determined similarly.
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